The Reference 600+ is a high-performance potentiostat/galvanostat/ZRA particularly suitable for applications in physical electrochemistry, sensors, coatings, and corrosion.

Overview

The Reference 600+ is a high-performance, research-grade potentiostat/galvanostat/ZRA designed for fast, low-current measurements.  It does well for a variety of applications such as physical electrochemistry (especially at microelectrodes), fast cyclic voltammetry, electrochemical corrosion, electrochemical noise measurements, paints and coatings, and sensors.

It has a number of auxiliary input and outputs designed to help you interface or control ancillary equipment such as a rotating disc electrode. It also has a thermocouple input for temperature measurements.

Electrochemical Impedance Spectroscopy

The Reference 600+ comes fully equipped to perform electrochemical impedance spectroscopy.  The Accuracy Contour Plot shown below provides a detailed look at the performance you can expect from your instrument in real-world situations. The results include the cell cable.

Reference 600 Plus ACP

Options

  • Extended Cable Lengths
    • Extended length cell cables (1.5 m, 3 m, 10 m) are also available for your convenience.

Below are additional details regarding the capabilities of the Reference 600+ potentiostat. Each bullet point contains a list of the type of techniques available for the instrument to run.

  • Physical Electrochemistry  – Techniques such as cyclic voltammetry, chronoamperometry, and chronopotentiometry and derivatives of these techniques.
  • Pulse Voltammetry – Techniques such as pulse voltammetry, square wave voltammetry, and associated stripping techniques such as anodic stripping voltammetry.
  • DC Corrosion – Run standard DC corrosion tests such as polarization resistance, potentiodynamic, cyclic polarization, and galvanic corrosion in addition to a number of others.
  • Electrochemical Energy – Test single-cells and stacks of various batteries, fuel cells or supercapacitors. Includes charge, discharge, cyclic charge-discharge techniques, potentiostatic, galvanostatic, self-discharge, leakage rate, and read cell voltage.
  • Electrochemical Signal Analyzer –  Designed specifically for the acquisition and analysis of time-dependent electrochemical noise signals. Cell voltage and current are continuously monitored at rates from 0.1 Hz to 1 kHz. A full featured set of analysis tools provides powerful analysis features such as statistical analysis, detrending, impedance spectra, and histogram analysis.
  • Electrochemical Frequency Modulation – A non-destructive corrosion rate measurement technique. It allows for measurement of the corrosion rate without prior knowledge of the Tafel constants. In addition, the technique determines the Tafel constants and provides 2 internal validity checks.
  • Critical Pitting Temperature – controls a Gamry Potentiostat, TDC4 Temperature Controller, and associated accessories to automatically measure the Critical Pitting Temperature of a material.
  • Electrochemical Noise – A more general form of electrochemical noise testing. It is also an ECM8 Multiplexer compatible electrochemical noise software package.
  • Electrochemical Impedance Spectroscopy – includes experimental scripts for potentiostatic, galvanostatic and hybrid impedance spectroscopy experiments in addition to single frequency techniques like Mott-Schottky. We also have our unique power-leveling multisine technique that improves signal-to-noise across the spectrum. On the analysis side, it provides tools for fitting spectra to equivalent circuit models, Kramers-Kronig transform for data validation and a graphical model editor. Our software even includes a script for EIS simulation.
  • eChemAC – Includes full capabilities of eChemDC Toolkit plus allows electrochemical impedance spectroscopy (EIS) and EFM experiments.

Other features

  • 2, 3, and 4 electrode measurements
  • Electrical Isolation
    • Floating instrument: use with autoclaves, mechanical stress apparatus, or pipeline probes.
  • Built-In EIS
    • On-board DDS to perform EIS from 10 µHz to 5 MHz.
  • DSP (Digital Signal Processing) Mode
    • Oversamples for improved signal-to-noise and accurate capacitance measurements.
  • Current Interrupt and Positive Feedback iR Compensation
    • Gamry potentiostats and their controlling software use control loop algorithms to accurately measure and correct for uncompensated resistance.
  • Auxiliary I/O
    • Control additional equipment via additional I/O interfaces: external signal input, analog voltage output, analog current output, auxiliary A/D input, and digital I/O connector.